Магия и эзотерика

Что такое число Фи

Золотое сечение в архитектуре

В качестве примера ученые исследовали шедевры архитектуры, созданные по правилам «золотого сечения»: египетские пирамиды, Пантеон, Парфенон, Собор Нотр-Дам де Пари, храм Василия Блаженного и др.

Парфенон — одно из красивейших зданий в Древней Греции (5 в. до н.э.) — имеет 8 колонн и 17 по разным сторонам, отношение его высоты к длине сторон равно 0,618. Выступы на его фасадах сделаны по «золотому сечению» (фото ниже).

Одним из ученых, который придумал и успешно применял усовершенствование модульной системы пропорций для архитектурных объектов (так называемый «модулор»), — был французский архитектор Ле Корбюзье. В основу модулора положена измерительная система, связанная с условным делением на части человеческого тела.

Русский архитектор М. Казаков, построивший несколько жилых домов в Москве, а также здания сената в Кремле и Голицынской больницы (сейчас 1-я Клиническая им. Н. И. Пирогова), — был одним из архитекторов, которые использовали при проектировании и строительстве законы о золотом сечении.

Нумерология и точные прогнозы по цифрам

Можно ли верить нумерологам? Числа из формулы, которая названа в честь неподражаемого Фибоначчи лишь небольшая часть того, что может получить человек, исследуя ряды последовательных цифр. Числа находятся повсюду. Лотерея, банковский счет, номер телефона и порядковый номер в очереди – все этого проявление порядка, собранного из сотен ниточек бесконечного хаоса. До выведения формулы золотого сечения схожие коды были созданы ученными по всему миру. Год за годом люди пытались понять собственную душу через открытия внешнего мира, через вселенную – столь далекую и непостижимую. Выеденное ФИ – это закономерность без намека на случайность. В нумерологии есть такое понятие «закономерная случайность» говорящее о том, как мало человек понимает природу происходящих событий.

Из беспокойства и неопределенности появляется страх, а он толкает человека на страшные, порой необратимые поступки. Гармония, которую описывает золотое сечение, находится между познанием собственной природы и осознания того, что не подвластно человеческой воли.

Это гармония, которую человек может увидеть воочию, к которой он способен прикоснуться и поверить, даже если ограниченное сознание не позволяет проявить веру. Свойства числа ФИ изучаются по сей день, как загадка, которая ускользает прямо из-под носа. Как найти собственную судьбу по коду Фибоначчи? Значение выведенных формул довольно простое. Все, что понадобится человеку – проявить немного терпения и быть открытым для всего нового и волнующего.

Золотое сечение в природе, человеке, искусстве

Прежде, чем мы начнем, хотелось бы уточнить ряд неточностей. Во-первых, само определение золотого сечения в данном контексте не совсем верно. Дело в том, что само понятие «сечение» – это термин геометрический, обозначающий всегда плоскость, но никак не последовательность чисел Фибоначчи.

И, во-вторых, числовой ряд и соотношение одного к другому, конечно, превратили в некий трафарет, который можно накладывать на все, что кажется подозрительным, и очень радоваться, когда есть совпадения, но все же, здравый смысл терять не стоит.

Однако, «все смешалось в нашем королевстве» и одно стало синонимом другого. Так что в общем и целом, смысл от этого не потерялся. А теперь к делу.

Вы удивитесь, но золотое сечение, точнее пропорции максимально приближенные к нему, можно увидеть практически везде, даже в зеркале. Не верите? Давайте с этого и начнем.

Пропорции золотого сечения в человеке

Знаете, когда я училась рисовать, то нам объясняли, как проще строить лицо человека, его тело и прочее. Все надо рассчитывать, относительно чего-то другого.

Все, абсолютно все пропорционально: кости, наши пальцы, ладони, расстояния на лице, расстояние вытянутых рук по отношению к телу и так далее. Но даже это не все, внутреннее строение нашего организма, даже оно, приравнивается или почти приравнивается к золотой формуле сечения. Вот какие расстояния и пропорции:

  • от плеч до макушки к размеру головы = 1:1.618

  • от пупка до макушки к отрезку от плеч до макушки = 1:1.618

  • от пупка до коленок и от коленок до ступней = 1:1.618

  • от подбородка до крайней точки верхней губы и от нее до носа = 1:1.618

Разве это не удивительно!? Гармония в чистом виде, как внутри, так и снаружи. И именно поэтому, на каком-то подсознательном что-ли уровне, некоторые люди не кажутся нам красивыми, даже если у них крепкое подтянутое тело, бархатная кожа, красивые волосы, глаза и прочее и все остальное. Но, все равно, малейшее нарушений пропорций тела, и внешность уже слегка «режет глаза».

Короче говоря, чем красивее кажется нам человек, тем ближе его пропорции к идеальным. И это, кстати, не только к человеческому телу можно отнести.

Золотое сечение в природе и ее явлениях

Классическим примером золотого сечения в природе является раковина моллюска Nautilus pompilius и аммонита. Но это далеко не все, есть еще много примеров:

  • в завитках человеческого уха мы можем увидеть золотую спираль;

  • ее же (или приближенную к ней) в спиралях, по которым закручиваются галактики;

  • и в молекуле ДНК;

  • по ряду Фибоначчи устроен центр подсолнуха, растут шишки, середина цветов, ананас и многие другие плоды.

Друзья, примеров настолько много, что я просто оставлю тут видеоролик (он чуть ниже), чтобы не перегружать текстом статью. Потому что, если эту тему копать, то можно углубиться в такие дебри: еще древние греки доказывали, что Вселенная и, вообще, все пространство, – спланировано по принципу золотого сечения.

Вы удивитесь, но эти правила можно отыскать даже в звуке. Смотрите:

  • Наивысшая точка звука, вызывающая боль и дискомфорт в наших ушах, равна 130 децибелам.

  • Делим пропорцией 130 на число золотого сечения φ = 1,62 и получаем 80 децибел — звук человеческого крика.

  • Продолжаем пропорционально делить и получаем, скажем так, нормальную громкость человеческой речи: 80 / φ = 50 децибел.

  • Ну, а последний звук, который получим благодаря формуле – приятный звук шепота = 2,618.

По данному принципу можно определить оптимально-комфортное, минимальное и максимальное число температуры, давления, влажности. Я не проверяла, и не знаю, насколько эта теория верна, но, согласитесь, звучит впечатляюще.

Главное, только не увлекаться этим, ведь если мы хотим что-то в чем-то увидеть, то увидим, даже если этого там нет

Вот я, например, обратила внимание на дизайн PS4 и увидела там золотое сечение =) Впрочем, эта консоль настолько классная, что не удивлюсь, если дизайнер, и правда, что-то там мудрил

Золотое сечение в искусстве

Тоже очень большая и обширная тема, которую стоит рассмотреть отдельно. Тут лишь помечу несколько базовых моментов. Самое примечательное, что многие произведения искусства и архитектурные шедевры древности (и не только) сделаны, по принципам золотого сечения.

  • Египетские и пирамиды Майя, Нотр-дам де Пари, греческий Парфенон и так далее.

  • В музыкальных произведениях Моцарта, Шопена, Шуберта, Баха и прочих.

  • В живописи (там это наглядно видно): все самые знаменитые картины известных художников сделаны с учетом правил золотого сечения.

  • Эти принципы можно встретить и в стихах Пушкина, и в бюсте красавицы Нефертити.

  • Даже сейчас правила золотой пропорции используются, например, в фотографии. Ну, и конечно, во всем остальном искусстве, включая кинематограф и дизайн.

https://youtube.com/watch?v=c3SVIQBXMnA

История числа ФИ

Слова, как и числовые значения, окружают взрослого и ребенка. История и значение ФИ позволит понять, для чего оно нужно, и как пропорция поможет изменить судьбу? Божественная мера, как золотое сечение называют адепты разных культур, связывают такие земные чудеса: «Мона Лиза», египетские пирамиды и обычная шишка. ФИ объединяет с виду несвязные вещи, явления, проявления тех событий, о которых человек не думает вовсе.

Леонард Пизанский открыл первые пропорции, что до сегодняшнего дня остались неизменными. В математике набор чисел чтится, ведь в них описывается основоположная функция для различных расчетов. Последовательность состоит из чисел, сумма которых определяет предыдущее значение. Первые значения последовательности: 0, 1, 1, 2, 3, 5, 8, 13. 4 выпадает, ведь первые четыре цифры последовательности завершают цепочку любой другой возможной закономерности. Спутать золотое сечение в коде с другими функциями или пропорциями невозможно.

Такое понятие, как золотое сечение появилось еще в древнем Риме. Египтяне, Греческая империя, даже на территории древней Руси мыслители пытались познать сущность окружающего мира. Значение удивительной и интересной пропорции впервые было разъяснено монахом Лука Пачоли. Божественное триединство рассматривалось, как основа всего существующего. Интересные факты о числовом коде по сей день поражают человека. В математике последовательность используется для расчета самых сложных формул. Удивительная функция описывает немало происходящих изменений в теле и душе. Она ставит под сомнение давно изученные постулаты и открывает новый вид на вселенную.

ЧИСЛА ФИБОНАЧЧИ УДИВИТЕЛЬНАЯ ЗАКОНОМЕРНОСТЬ

Тайна числа 1.618034 – самое ВАЖНОЕ число в мире

ЗОЛОТОЕ СЕЧЕНИЕ

Запись основных чисел золотого сечения в стандартной форме

В следующем примере обозначение 1 используется для представления -1.

211.0 1 φ не является стандартным числом с основанием φ, поскольку оно содержит «11» и «2», которые не являются «0» или «1», и содержит 1 = −1, что не является либо “0”, либо “1”.

Чтобы «стандартизировать» числительное, мы можем использовать следующие замены: 011 φ = 100 φ , 0200 φ = 1001 φ , 0 1 0 φ = 1 01 φ и 1 1 0 φ = 001 φ . Мы можем применять замены в любом порядке, так как результат тот же. Ниже справа показаны замены, примененные к числу в предыдущей строке, а полученное число – слева.

211,0 1 φ
300,0 1 φ 011 φ → 100 φ
1101,0 1 φ 0200 φ → 1001 φ
10001,0 1 φ 011 φ → 100 φ (снова)
10001. 1 01 φ 0 1 0 φ → 1 01 φ
10000,011 φ 1 1 0 φ → 001 φ
10000,1 φ 011 φ → 100 φ (снова)

Таким образом можно однозначно стандартизировать любое положительное число с нестандартным завершающим представлением по основанию φ . Если мы дойдем до точки, где все цифры будут «0» или «1», за исключением первой отрицательной цифры , тогда число будет отрицательным. (Исключением является случай, когда первая цифра является отрицательным , а следующие две цифры являются одним, как 1 111,001 = 1,001) . Это может быть преобразовано в отрицательной базовой-φ представления с отрицанием каждую цифру, стандартизацию результат, а затем пометить его как отрицательный. Например, используйте знак минус или другое значение для обозначения отрицательных чисел. Если арифметические операции выполняются на компьютере, может появиться сообщение об ошибке .

Что такое число ФИ?

Что собой представляют числа ФИ? Числовое значение последовательности равно 1,61803398. Оно означает пропорцию, ту же гармонию, только в двух абстрактных понятиях – большего и меньшего. ФИ обозначает, что меньшая часть всегда соотносится к большей, а большая к целому. Расчет, значит больше, чем любой другой коэффициент, выведенный математиком или физиком. В процентном соотношении пропорция отображается, как 62% на 38%. Зачем нужна такая пропорция? У золотого сечения пространственные и временные характеристики. Код ФИ – это космический порядок, это порождение хаоса, что стал последовательным. В математике и геометрии цифровое отображение гармонии рассматривается «как ассиметричная симметрия». Мироустройство и значение ФИ тесно переплетены. Закономерность, открытая человеческому взору, является отображением всего, что может произойти в судьбе личности.

Где прослеживается число ФИ? Золотое сечение состоит из определенной, неизменной последовательности. Пропорция, которая прослеживается во всем сущем на Земле:

  • в человеческом теле;
  • в природе;
  • во вселенной;
  • в природных явлениях.

Разглядеть закономерность в собственном теле или в мире вокруг не столь важно. Последовательность ФИ существует вне зависимости от того, верить в нее личность или нет

Зачем человеку нужно знать значение пропорции? ФИ – это ключ к тому, как возникает каждая живая клеточка во вселенной. Это знание, о котором высшие умы человечества даже не могли мечтать. Божественное начало и возможно ответ на волнующий каждую верующую душу и атеиста вопрос: откуда появился человек, и какова цель его пребывания на земле?

Математические расчеты

Фибоначчи в результате своих исследований пришел к тому, что все числа имеют четкую последовательность.

Каждое следующее число, начиная с третьего, несет в себе сумму двух предыдущих. А частное двух соседних чисел представляет собой максимально приближенное к числу 1.618, то есть к тому самому числу ФИ.

Вселенная влияет на каждое живое существо на планете. Закономерности и пропорции, которые прослеживаются в природе, часто остаются незамеченными.

Ученые заметили, что цветки и семена подсолнуха, ромашки, чешуйки в плодах ананаса, хвойных шишках расположены по двойным спиралям, завивающимся навстречу друг другу. При этом числа «правых» и «левых» спиралей всегда относятся друг к другу, как соседние числа Фибоначчи (13:8, 21:13, 34:21, 55:34).

Многочисленные примеры двойных спиралей, встречающихся повсюду в природе, всегда соответствуют этому правилу.

Золотое сечение

Выяснилось, что в расположении листьев на ветке семян подсолнечника, шишек сосны проявляет себя ряд Фибоначчи, а стало быть, проявляет себя закон золотого сечения. Паук плетет паутину спиралеобразно. Спиралью закручивается ураган. Испуганное стадо северных оленей разбегается по спирали. Молекула ДНK закручена двойной спиралью. Гете называл спираль «кривой жизни».

Пьер Kюри в начале ХХ века сформулировал ряд глубоких идей симметрии. Согласно его утверждению нельзя рассматривать симметрию какого-либо тела, не учитывая симметрию окружающей среды.

Закономерности золотой симметрии проявляются в энергетических переходах элементарных частиц, в строении некоторых химических соединений, в планетарных и космических системах, в генных структурах живых организмов. Эти закономерности, как указано выше, есть в строении отдельных органов человека и тела в целом, а также проявляются в биоритмах и функционировании головного мозга и зрительного восприятия.

История чисел Фибоначчи

Леонардо Пизано, по прозвищу Фибоначчи, — итальянский математик — родился в Пизе в 1170 году. Его отец работал в торговом порту на северо-востоке Алжира и часто путешествовал.

Фибоначчи изучал математику и во время обширных путешествий познакомился с индийско-арабской системой счисления. Оттуда математик и узнал о числовой последовательности, которую в древней Индии использовали в стихосложении.

Названа последовательность в честь итальянца, потому что именно он представил ее европейскому обществу в труде «Книга абака».

Что такое числа Фибоначчи?

Числа Фибоначчи — это ряд, состоящий из целых чисел. Их особенность заключается в том, что каждый элемент представляет собой сумму двух предыдущих чисел.

Последовательность Фибоначчи начинается с 0 и 1. Продолжить ряд легко: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144 и так до бесконечности.

Математик обратил внимание на числовую последовательность, когда думал о разведении кроликов. Задача была поставлена следующим образом: «Если новорожденную пару кроликов, самца и самку, поместить в поле, то сколько пар кроликов будет через год?»

Но как известно, ни одну практическую задачу невозможно решить без некоторых ограничений и предположений.  Поэтому, к условию задачи добавились следующие допущения:

Задача была поставлена следующим образом: «Если новорожденную пару кроликов, самца и самку, поместить в поле, то сколько пар кроликов будет через год?». Но как известно, ни одну практическую задачу невозможно решить без некоторых ограничений и предположений.  Поэтому, к условию задачи добавились следующие допущения:

  • Кролики не умирают;
  • Кролики достигают половой зрелости за один месяц;
  • Срок беременности у кроликов – один месяц;
  • Достигнув половой зрелости, кролики-самки рожают ежемесячно кролика-самца и кролика-самку.

Схема разведения кроликов выглядит следующим образом:

Так как по условию задачи в поле поместили новорожденных кроликов, то спариваться они не могут, так как не достигли половой зрелости. Через месяц кролики начинают спариваться и еще через один – рождается первая пара потомков. «Родители» продолжают наращивать потомство, а дети месяц ждут своего взросления, чтобы тоже стать родителями. В итоге, через 3 месяца по полю будут бегать три пары кроликов. Через 4 месяца уже 5 пар, а через 5 месяцев – 8.

Уже прослеживается закономерность. В конце каждого месяца количество пар кроликов будет больше, чем в предыдущем месяце ровно на столько, сколько пар было два месяца назад.

С точки зрения математики — это красивая последовательность. Но больший интерес для исследователей представляет не сам ряд, а частное соседних чисел, равное, примерно 1,618 для всех элементов ряда. Эта пропорция больше известна как золотое сечение.

Это соотношение можно найти во предметах, которые нас отгружают: гармония в гранях снежинок, в расположении лепестков цветов, ячеек ананаса, завитки раковин у улитки — все подчиняется правилу золотого сечения. Даже строение нашего тела гармонично: если измерить наш рост и разделить на расстояние от пояса до ступней или длину руки на расстояние от локтя до кончиков пальцев, получится известное нам соотношение 1,618.

 

КУРС

ШКОЛА ИНВЕСТИЦИЙ

Научитесь грамотно оценивать стоимость компании не только с фундаментальной точки зрения, но и «со стороны рынка».
 

Если мы видим человека и его внешность кажется красивой, то скорее всего пропорции его лица соотносятся с соотношением чисел Фибоначчи.

Природа полагается на эту врожденную пропорцию для поддержания баланса.

Финансовые рынки имеют ту же математическую основу, что и перечисленные природные явления. Давайте рассмотрим некоторые способы применения золотого сечения к финансам и покажем несколько диаграмм в качестве доказательства.

История золотого сечения

У этой величины несколько названий. Среди них – божественная пропорция и асимметричная симметрия. Считается, что в науку метод золотого деления внес Пифагор в VI веке до нашей эры. В свою очередь он узнал об этом у египтян и вавилонян. Ведь то, что они использовали соотношения золотого деления доказывают пропорции пирамид, храмов, барельефов, предметов быта и украшений.

Встречается данное правило и в другой древней архитектуре. Например, пирамида Гизы имеет высоту 146,6 метров, а каждая сторона основания достигает 230,5 метров. Если рассчитать отношение длины стороны к высоте, получаем 1,5717, а это совсем рядом со значением Ф. Греческий скульптор и математик Фидий, живший в V веке до нашей эры с применением правила золотого деления создавал скульптуры для Парфенона. Универсальным связующим звеном математических отношений назвал золотое сечение Платон. А Евклид еще в IV веке до нашей эры увидел золотое сечение в пентаграмме.

С данным понятием непосредственно связана последовательность Фибоначчи. Известный математик создал последовательный ряд чисел, и если взять любые два очередных числа, то их отношение будет очень близко к Ф. При этом по мере возрастания чисел, соотношение всё больше приближается к 1,618. К примеру, если взять 3 и 5, то соотношение равно 1,666, а если 13 и 21, то получается уже 1,625. Равное значению Ф дает отношение 144 и 233.

Доказательство по индукции

Формула F0 +F1 +F2 +…+Fn =Fn+2 –1. представляет собой бесконечно много формул в свернутом виде. Доказать, что F0 +F1 +F2 +…+Fn =Fn+2 –1. верно для конкретного значения n, скажем для n = 6, — простая арифметическая задача. Достаточно будет записать числа от F0 до F6 и сложить их: F0 +F2 +…+F6 =1+1+2+3+5+8+13=33.

Несложно увидеть, что F8 = 34, поэтому формула действует. Перейдем к F7. Не будем тратить время и складывать все числа: мы уже знаем сумму вплоть до F6. Таким образом, (F0 +F1 +…+F6)+F7 =33+21=54. Как и раньше, все сходится: F9 = 55.

Если сейчас мы начнем проверять, работает ли формула для n = 8, наши силы окончательно иссякнут. Но все же посмотрим, что мы уже знаем и что хотим выяснить:

F0 +F1 +…+F7 =F9.

F0 +F1 +…+F7 +F7 =?

Воспользуемся предыдущим результатом: (F0 +F1 +…+F7)+F8 =(F9-1)+F8.

Мы, конечно, можем вычислить (F9-1) + F8 арифметически. Но так мы устанем еще больше. В то же время мы знаем, что F8 + F9 = F10. Таким образом, нам не нужно ничего высчитывать или заглядывать в таблицу чисел Фибоначчи:

(F0 + F1 +… + F7) + F8 = (F9-1) + F8 = (F8 + F9-1) = F10-1.

Мы удостоверились, что формула работает для n = 8, на основе того, что знали про n = 7.

В случае n = 9 мы точно так же опираемся на результат для n = 8 (убедитесь в этом самостоятельно). Разумеется, доказав верность F0 +F1 +F2 +…+Fn =Fn+2 –1. для n, мы можем быть уверены, что F0 +F1 +F2 +…+Fn =Fn+2 –1. верно и для n + 1.

Мы готовы дать полное доказательство. Как уже было сказано, F0 +F1 +F2 +…+Fn =Fn+2 –1. представляет собой бесконечное количество формул для всех значений n от нуля до бесконечности. Посмотрим, как работает доказательство.

Вначале мы доказываем F0 +F1 +F2 +…+Fn =Fn+2 –1. в простейшем случае, для n = 0. Мы просто проверяем, что F0 = F0+2 — 1. Так как F0 = 1, а F2 = 2, очевидным образом 1 = 2 — 1, а F0 = F2-1.

Дальше нам достаточно показать, что верность формулы для одного значения n (скажем, n = k) автоматически означает верность для n + 1 (в нашем примере n = k + 1). Нам лишь надо продемонстрировать, как устроено это «автоматически». Что нам нужно сделать?

Возьмем некоторое число k. Предположим, мы уже знаем, что F0+F1+…+Fk =Fk+2–1. Мы ищем величину F0 + F1 +… + Fk + Fk+1.

Мы уже знаем сумму чисел Фибоначчи вплоть до Fk, поэтому у нас получается:

(F0+F1+…+Fk)+Fk+1 =(Fk+2–1)+Fk+1.

Правая часть равна Fk+2 — 1 + Fk+1, и мы знаем, чему равна сумма следующих друг за другом чисел Фибоначчи:

Fk+2–1 + Fk+1 = (Fk+2 + Fk+1) — 1 = Fk+3– 1

Подставим в наше равенство:

(F0+F1+…+Fk)+Fk+1 =Fk+3–1

Сейчас я объясню, что мы сделали. Если мы знаем, что F0 +F1 +F2 +…+Fn =Fn+2 –1. верно, когда мы суммируем числа вплоть до Fk, тогда F0 +F1 +F2 +…+Fn =Fn+2 –1. должно быть верно, если мы приплюсуем Fk+1.

Подытожим:

— Формула F0 +F1 +F2 +…+Fn =Fn+2 –1. верна для n = 0.

— Если формула F0 +F1 +F2 +…+Fn =Fn+2 –1. верна для n, она верна и для n + 1.

Мы можем уверенно сказать, что F0 +F1 +F2 +…+Fn =Fn+2 –1. верно для любых значений n. Верно ли F0 +F1 +F2 +…+Fn =Fn+2 –1. для n = 4987? Это так, если выражение верно для n = 4986, что основано на верности выражения для n = 4985, и так далее до n = 0. Следовательно, формула F0 +F1 +F2 +…+Fn =Fn+2 –1. верна для всех возможных значений. Этот метод доказательства известен под названием математическая индукция (или доказательство по индукции). Мы проверяем базовый случай и даем шаблон, по которому каждый следующий случай может быть доказан на основе предыдущего.

Пропорции золотого сечения в материальном мире

В 1509 году Лука Пачоли написал книгу, которая называет число Ф «Божественной пропорцией», что было наглядно показано Леонардо да Винчи. Позже да Винчи назвал эту пропорцию золотым сечением. Оно использовалось для достижения баланса и красоты во многих картинах и скульптурах эпохи Возрождения.

Да Винчи сам использовал золотое сечение, чтобы определить все пропорции в «Тайной вечере», включая размеры стола, пропорции стен и деталей интерьера. Золотое сечение также появляется в «Витрувианском Человеке» да Винчи и «Мона Лизе». Считается, что золотое сечение использовали и другие великие художники, включая Микеланджело, Рафаэля, Рембрандта, Сьюрата и Сальвадора Дали.

Термин «фи» был придуман американским математиком Марком Барром в 1900-х годах. Ф продолжал применяться в математике и физике, в том числе в плитках Пенроуза 1970-х годов, которые позволяли мозаичным поверхностям иметь пятикратную симметрию. В 1980-х годах Ф появился в квазикристаллах – недавно открывшейся форме материи.

Фи — более чем загадочный и неясный термин в математике и физике. Он появляется вокруг нас в нашей повседневной жизни, даже в наших эстетических взглядах. Исследования показали, что когда испытуемые видят случайные лица, они считают наиболее привлекательными те, которые имеют четкие параллели с золотым сечением. Лица, оцененные как наиболее привлекательные, показывают золотые соотношения между шириной лица и шириной глаз, носа и бровей. Испытуемые не были математиками или физиками, знакомыми с правилом золотого сечения (они были просто среднестатистическими людьми), и оно вызвало инстинктивную реакцию.

Золотое сечение также проявляется во всех видах природы и науки. Ниже приведены примеры самых неожиданных мест, в которых можно его встретить.

  • Цветочные лепестки. Количество лепестков на некоторых цветах соответствует последовательности Фибоначчи. С точки зрения теории Дарвина считается, что каждый лепесток помещается таким образом, чтобы обеспечить максимально возможное воздействие солнечного света и других факторов.
  • Семенные головки. Семена цветка часто начинают произрастать в центре семенной головки и мигрируют наружу, заполняя свободное пространство. Например, семечки подсолнухов следуют этой схеме.
  • Сосновые шишки. Семенные коробочки сосновых шишек наполнены семенами, которые растут спирально вверх, в противоположных направлениях. Количество шагов, которые делают спирали, как правило, соответствует числам Фибоначчи.
  • Ветви дерева. То, как ветки дерева формируются или расщепляются, является примером последовательности Фибоначчи. Корневые системы и водоросли также придерживаются такого способа формирования.
  • Раковины. Многие раковины, в том числе раковины улитки и раковины наутилуса, являются прекрасными примерами золотой спирали.
  • Спиральные галактики. Млечный путь имеет несколько спиральных рукавов, каждый из которых имеет логарифмическую спираль примерно 12 градусов. Форма спирали идентична золотой спирали, а золотой прямоугольник можно нарисовать над любой спиральной галактикой.
  • Ураганы. Внутреннее строение ураганов часто следует правилу золотой спирали.
  • Пальцы руки человека. Каждый участок пальца от кончика основания до запястья больше, чем предыдущий, примерно на соотношение Ф.
  • Тела человека и животных. Расстояние от пупка человека до пола и от макушки головы до пупка – это золотое сечение. Но человек не единственный пример золотого сечения в животном мире. Дельфины, морские звезды, морские ежи, муравьи и пчелы также демонстрируют эту пропорцию.
  • Молекулы ДНК. Молекула ДНК имеет размеры 34 ангстрем на 21 ангстрем на каждом полном цикле спирали в виде сдвоенной спирали. В рядах Фибоначчи 34 и 21 являются последовательными числами.

Таким образом, примеров, где встречаются пропорции и соотношения, следующие правилу золотого сечения, более чем достаточно. Кроме перечисленных примеров, число «Фи» часто встречается в математике, физике, астрономии, биологии и иных сферах деятельности человека. Можно смело утверждать, что название «Божественное сечение» по праву присвоено числу Ф – видимо им руководствовался создатель, наполняя эту Вселенную всем живым и неживым.

Добавить комментарий